Home

Jezero Taupo uravnotežen Ally biio4 band gap Tezej kupka Subvencija

Fabrication of the heterojunction catalyst BiVO4/P25 and its visible-light  photocatalytic activities | Royal Society Open Science
Fabrication of the heterojunction catalyst BiVO4/P25 and its visible-light photocatalytic activities | Royal Society Open Science

Structural stability, band structure and optical properties of different  BiVO4 phases under pressure | SpringerLink
Structural stability, band structure and optical properties of different BiVO4 phases under pressure | SpringerLink

Band structure of pure BiVO 4 associated with the energetic value of... |  Download Scientific Diagram
Band structure of pure BiVO 4 associated with the energetic value of... | Download Scientific Diagram

Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to  largely improve the visible light induced photocatalytic activity -  ScienceDirect
Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity - ScienceDirect

Structural and electronic properties of oxygen defective and Se-doped  p-type BiVO4(001) thin film for the applications of photocatalysis -  ScienceDirect
Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4(001) thin film for the applications of photocatalysis - ScienceDirect

Energy-Band Alignment of BiVO4 from Photoelectron Spectroscopy of  Solid-State Interfaces | The Journal of Physical Chemistry C
Energy-Band Alignment of BiVO4 from Photoelectron Spectroscopy of Solid-State Interfaces | The Journal of Physical Chemistry C

Band alignment between BiVO 4 and In 2 O 3 from cited values of... |  Download Scientific Diagram
Band alignment between BiVO 4 and In 2 O 3 from cited values of... | Download Scientific Diagram

Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar  water splitting efficiency - Journal of Materials Chemistry A (RSC  Publishing)
Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar water splitting efficiency - Journal of Materials Chemistry A (RSC Publishing)

Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to  largely improve the visible light induced photocatalytic activity -  ScienceDirect
Surface modification of m-BiVO4 with wide band-gap semiconductor BiOCl to largely improve the visible light induced photocatalytic activity - ScienceDirect

Ab Initio Calculation of Surface-Controlled Photocatalysis in  Multiple-Phase BiVO4 | The Journal of Physical Chemistry C
Ab Initio Calculation of Surface-Controlled Photocatalysis in Multiple-Phase BiVO4 | The Journal of Physical Chemistry C

Phase transition-induced band edge engineering of BiVO4 to split pure water  under visible light | PNAS
Phase transition-induced band edge engineering of BiVO4 to split pure water under visible light | PNAS

Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4  nanocomposite: a first-principles study - Physical Chemistry Chemical  Physics (RSC Publishing)
Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study - Physical Chemistry Chemical Physics (RSC Publishing)

Efficient solar water splitting by enhanced charge separation in a bismuth  vanadate-silicon tandem photoelectrode | Nature Communications
Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode | Nature Communications

Surfaces | Free Full-Text | Multilayer WO3/BiVO4 Photoanodes for  Solar-Driven Water Splitting Prepared by RF-Plasma Sputtering
Surfaces | Free Full-Text | Multilayer WO3/BiVO4 Photoanodes for Solar-Driven Water Splitting Prepared by RF-Plasma Sputtering

Frontiers | Effects of Zirconium Doping Into a Monoclinic Scheelite BiVO4  Crystal on Its Structural, Photocatalytic, and Photoelectrochemical  Properties
Frontiers | Effects of Zirconium Doping Into a Monoclinic Scheelite BiVO4 Crystal on Its Structural, Photocatalytic, and Photoelectrochemical Properties

Energy Band Alignment of BiVO4 from Photoelectron Spectroscopy of  Solid-state Interfaces
Energy Band Alignment of BiVO4 from Photoelectron Spectroscopy of Solid-state Interfaces

Energy band edge alignment of anisotropic BiVO4 to drive  photoelectrochemical hydrogen evolution - ScienceDirect
Energy band edge alignment of anisotropic BiVO4 to drive photoelectrochemical hydrogen evolution - ScienceDirect

Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem  cells | Science Advances
Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells | Science Advances

BISMUTH – BASED OXIDE SEMICONDUCTORS: MILD SYNTHESIS AND PRACTICAL  APPLICATIONS by HARI KRISHNA TIMMAJI Presented to the Facu
BISMUTH – BASED OXIDE SEMICONDUCTORS: MILD SYNTHESIS AND PRACTICAL APPLICATIONS by HARI KRISHNA TIMMAJI Presented to the Facu

Calculated band structures of: (a) m-BiVO 4 , (b) MoS 2 , (c) WS 2 ,... |  Download Scientific Diagram
Calculated band structures of: (a) m-BiVO 4 , (b) MoS 2 , (c) WS 2 ,... | Download Scientific Diagram

Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s  and V d Orbitals
Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals

Effects of Doping on the Crystal Structure of BiVO4
Effects of Doping on the Crystal Structure of BiVO4

Diagram (left) showing the Fermi level tunability in BiVO4 and the... |  Download Scientific Diagram
Diagram (left) showing the Fermi level tunability in BiVO4 and the... | Download Scientific Diagram

A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high  tunable photovoltage for water splitting | Scientific Reports
A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting | Scientific Reports