Home

Radim kućne poslove Dobrodošli odijelo band gap sn Ernest Shackleton Samo se preliva Čitao sam knjigu

Electronic band structures of Ge1−xSnx semiconductors: A first-principles  density functional theory study: Journal of Applied Physics: Vol 113, No 6
Electronic band structures of Ge1−xSnx semiconductors: A first-principles density functional theory study: Journal of Applied Physics: Vol 113, No 6

High-performance methylammonium-free ideal-band-gap perovskite solar cells  - ScienceDirect
High-performance methylammonium-free ideal-band-gap perovskite solar cells - ScienceDirect

Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables  Broadening of Absorption Spectrum in Solar Cells | Journal of the American  Chemical Society
Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells | Journal of the American Chemical Society

PDF] The nature of the band gap of GeSn alloys | Semantic Scholar
PDF] The nature of the band gap of GeSn alloys | Semantic Scholar

Reversible Band Gap Narrowing of Sn‐Based Hybrid Perovskite Single Crystal  with Excellent Phase Stability - Ju - 2018 - Angewandte Chemie  International Edition - Wiley Online Library
Reversible Band Gap Narrowing of Sn‐Based Hybrid Perovskite Single Crystal with Excellent Phase Stability - Ju - 2018 - Angewandte Chemie International Edition - Wiley Online Library

Band Gap Tuning via Lattice Contraction and Octahedral Tilting in  Perovskite Materials for Photovoltaics | Journal of the American Chemical  Society
Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics | Journal of the American Chemical Society

Frontiers | Group IV Direct Band Gap Photonics: Methods, Challenges, and  Opportunities
Frontiers | Group IV Direct Band Gap Photonics: Methods, Challenges, and Opportunities

Materials | Free Full-Text | The Effect of Gate Work Function and Electrode  Gap on Wide Band-Gap Sn-Doped α-Ga2O3 Metal–Semiconductor  Field-Effect Transistors
Materials | Free Full-Text | The Effect of Gate Work Function and Electrode Gap on Wide Band-Gap Sn-Doped α-Ga2O3 Metal–Semiconductor Field-Effect Transistors

Nature of the band gap of halide perovskites <em> ABX</em><sub>3</sub>  (<em> A</em> = CH<sub>3</sub>NH<sub>3</sub>, Cs; <em> B</em> = Sn, Pb; <em>  X</em> = Cl, Br, I): First-principles calculations<xref ref-type="fn"  rid="cpb150734fn1">*</xref>
Nature of the band gap of halide perovskites <em> ABX</em><sub>3</sub> (<em> A</em> = CH<sub>3</sub>NH<sub>3</sub>, Cs; <em> B</em> = Sn, Pb; <em> X</em> = Cl, Br, I): First-principles calculations<xref ref-type="fn" rid="cpb150734fn1">*</xref>

Accurate and efficient band gap predictions of metal halide perovskites  using the DFT-1/2 method: GW accuracy with DFT expense
Accurate and efficient band gap predictions of metal halide perovskites using the DFT-1/2 method: GW accuracy with DFT expense

Figure 3 from Band gap and work function tailoring of SnO2 for improved  transparent conducting ability in photovoltaics | Semantic Scholar
Figure 3 from Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics | Semantic Scholar

Calculated direct and indirect bandgap energies of GeSn alloys as a... |  Download Scientific Diagram
Calculated direct and indirect bandgap energies of GeSn alloys as a... | Download Scientific Diagram

Effects of different exchanging ions on the band structure and  photocatalytic activity of defect pyrochlore oxide: a case study on KNbTeO6  - Catalysis Science & Technology (RSC Publishing)
Effects of different exchanging ions on the band structure and photocatalytic activity of defect pyrochlore oxide: a case study on KNbTeO6 - Catalysis Science & Technology (RSC Publishing)

Characterization of GeSn Semiconductors for Optoelectronic Devices
Characterization of GeSn Semiconductors for Optoelectronic Devices

nanoGe - HOPV22 - Optimization of low band-gap perovskite for photovoltaics
nanoGe - HOPV22 - Optimization of low band-gap perovskite for photovoltaics

Ge1−xSnx alloys: Consequences of band mixing effects for the evolution of  the band gap Γ-character with Sn concentration | Scientific Reports
Ge1−xSnx alloys: Consequences of band mixing effects for the evolution of the band gap Γ-character with Sn concentration | Scientific Reports

Nature of the band gap of halide perovskites <em> ABX</em><sub>3</sub>  (<em> A</em> = CH<sub>3</sub>NH<sub>3</sub>, Cs; <em> B</em> = Sn, Pb; <em>  X</em> = Cl, Br, I): First-principles calculations<xref ref-type="fn"  rid="cpb150734fn1">*</xref>
Nature of the band gap of halide perovskites <em> ABX</em><sub>3</sub> (<em> A</em> = CH<sub>3</sub>NH<sub>3</sub>, Cs; <em> B</em> = Sn, Pb; <em> X</em> = Cl, Br, I): First-principles calculations<xref ref-type="fn" rid="cpb150734fn1">*</xref>

On understanding bandgap bowing and optoelectronic quality in Pb–Sn alloy  hybrid perovskites - Journal of Materials Chemistry A (RSC Publishing)
On understanding bandgap bowing and optoelectronic quality in Pb–Sn alloy hybrid perovskites - Journal of Materials Chemistry A (RSC Publishing)

The origin of electronic band structure anomaly in topological crystalline  insulator group-IV tellurides | npj Computational Materials
The origin of electronic band structure anomaly in topological crystalline insulator group-IV tellurides | npj Computational Materials

Band gap engineering of bulk and nanosheet SnO: an insight into the  interlayer Sn–Sn lone pair interactions - Physical Chemistry Chemical  Physics (RSC Publishing) DOI:10.1039/C5CP02255J
Band gap engineering of bulk and nanosheet SnO: an insight into the interlayer Sn–Sn lone pair interactions - Physical Chemistry Chemical Physics (RSC Publishing) DOI:10.1039/C5CP02255J

Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables  Broadening of Absorption Spectrum in Solar Cells | Journal of the American  Chemical Society
Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells | Journal of the American Chemical Society

Band Gap Dependence on Cation Disorder in ZnSnN2 Solar Absorber - Veal -  2015 - Advanced Energy Materials - Wiley Online Library
Band Gap Dependence on Cation Disorder in ZnSnN2 Solar Absorber - Veal - 2015 - Advanced Energy Materials - Wiley Online Library

Electronic band structure for Si, Ge and α -Sn. Eg and E Γ are the... |  Download Scientific Diagram
Electronic band structure for Si, Ge and α -Sn. Eg and E Γ are the... | Download Scientific Diagram

Electronic band structure for Si, Ge and α -Sn. Eg and E Γ are the... |  Download Scientific Diagram
Electronic band structure for Si, Ge and α -Sn. Eg and E Γ are the... | Download Scientific Diagram